# **Experiences with a National GHG Inventory System**

Federal Environment Agency Austria

Judith Brunner, Klaus Radunsky

May 2001

#### **Contents**



- 1. Introduction
- 2. National system
  - Current system future system
- 3. Quality management system
  - Accreditation inspection body EN 45004
- 4. Uncertainty analysis
- 5. Identification of key source categories

#### **Introduction (1)**





## Introduction (2)



#### Timetable for steps to be taken



# National system (1)



#### **Current system**

## International obligations:

- UNFCCC / Kyoto Protocol
- UNECE / CLRTAP
- EU CO<sub>2</sub> Monitoring Mechanism
- Austrian Air Quality Protection Act
- EU IPPC Directive / EPER (European PRTR)
- Austrian air emission inventory
  - all pollutants

  - all reporting formats

# National system (2)



# Adaptation of the national system according to Art. 5.1 Kyoto Protocol

#### Definition:

A national system includes all institutional, legal and procedural arrangements ... for estimating anthropogenic emissions ... of all greenhouse gases ... and for reporting and archiving inventory information.

#### Adaptation:

- Intensified collaboration with external institutions
- Adapted processes for compilation of emission inventories → realized by means of QM system

#### National system (3)



#### **Future system**



# **Quality management system (1)**









#### Comparison EN 45000 series - ISO 9000 series

#### Similar:

Normative references for a QM system Further requirements of EN 45000 series:

- Accredited bodies under the EN 45000 series are obliged to strict independence, impartiality and integrity.
- Personnel must be free from any commercial, financial and other pressure.
- External persons or organizations must not influence the results.



# **Quality management system (3)**



Federal Environment Agency Austria

# **Uncertainty analysis (1)**



#### Work

performed by the Austrian Research Centers Seibersdorf Winiwarter, W.; Rypdal, K.; accepted for publication in Atmospheric Environment, 2001.

#### **Procedure**

- Compilation of emission sources
- Prioritization and first estimate of uncertainty
- 3. Uncertainty assessment for input parameters
- 4. Monte Carlo analysis





| Emission Source                           | CO <sub>2</sub> | CH <sub>4</sub> | N <sub>2</sub> O |
|-------------------------------------------|-----------------|-----------------|------------------|
| Energy conversion                         | ×               |                 | ×                |
| Industry                                  | ×               |                 |                  |
| Transport                                 | ×               |                 | ×                |
| Energy – other sources                    | ×               |                 |                  |
| Fugitive emissions – gas and liquid fuels | ×               |                 |                  |
| Industrial processes – cement             | ×               |                 |                  |
| Metal industry processes – iron and steel | ×               |                 |                  |
| Enteric fermentation – cattle             |                 | ×               |                  |
| Agricultural soils                        |                 | ×               | ×                |
| Abandonment of managed lands              | ×               |                 |                  |
| Solid waste disposal                      |                 | ×               |                  |

Most relevant emission sources with regard to uncertainty

Federal Environment Agency Austria





| Total u | incertainty        | CO <sub>2</sub> | CH <sub>4</sub> | N <sub>2</sub> O | Total GHG emissions |
|---------|--------------------|-----------------|-----------------|------------------|---------------------|
| 1990    | Mean               | 63,20           | 9,48            | 6,59             | 79,27               |
|         | Standard deviation | 0,73            | 2,29            | 2,95             | 3,89                |
|         | 2σ                 | 2,3%            | 48,3%           | 89,6%            | 9,8%                |
| 1997    | Mean               | 67,76           | 8,34            | 6,81             | 82,91               |
|         | Standard deviation | 0,71            | 1,98            | 2,93             | 3,67                |
|         | 2σ                 | 2,1%            | 47,4%           | 85,9%            | 8,9%                |

| Rando | m uncertainty      | CO <sub>2</sub> | CH₄   | N <sub>2</sub> O | Total GHG emissions |
|-------|--------------------|-----------------|-------|------------------|---------------------|
| 1990  | Mean               | 63,54           | 11,41 | 1,99             | 76,94               |
|       | Standard deviation | 0,30            | 1,64  | 0,26             | 1,73                |
|       | 2σ                 | 1,0%            | 28,7% | 25,6%            | 4,5%                |
| 1997  | Mean               | 68,05           | 10,02 | 2,27             | 80,34               |
|       | Standard deviation | 0,34            | 1,43  | 0,27             | 1,53                |
|       | 2σ                 | 1,0%            | 28,5% | 23,9%            | 3,8%                |

#### Results

Federal Environment Agency Austria





#### **Method**

Good Practice Report, Chapter 7 (Methodological Choice and Recalculation)

- Tier 1 Level Assessment
   (emission sources adding up to over 95% of total emissions)
- Tier 1 Trend Assessment
   (emission source trend diverging significantly from the total trend)



# **Key source categories (2)**

| Emission source               | CO <sub>2</sub> | CH <sub>4</sub> | N <sub>2</sub> O | HFC | PFC | SF <sub>6</sub> |
|-------------------------------|-----------------|-----------------|------------------|-----|-----|-----------------|
| Energy                        | 13              |                 | 1                |     |     |                 |
| Industrial Processes          | 4               |                 |                  | 1   | 1   | 1               |
| Solvent and other product use | 1               |                 |                  |     |     |                 |
| Agriculture                   |                 | 2               | 1                |     |     |                 |
| Land-use change and forestry  |                 |                 |                  |     |     |                 |
| Waste                         |                 | 2               |                  |     |     |                 |

Number of key source sub-categories based on emission data for 1999

These key source categories account for <u>96%</u> of total greenhouse gas emissions.

#### **Conclusions**



- On legal authority, the Federal Environment Agency Austria prepares the professional base for all international reporting obligations regarding air emissions.
- The Federal Environment Agency Austria takes all steps in order to be prepared that the Kyoto Protocol enters into force as scheduled.
- The following steps are being taken:
  - Adaptation of the national system
  - Quality management system and accreditation

  - Key sources



improvement program